Методические основы изучения табличного умножения и соответствующих случаев деления

Страница 1

Первоначальное изучение умножения и деления целесообразно осуществлять в следующей последовательности трех циклов задач (по три задачи в каждом цикле):

I цикл: а,б) умножение при постоянном множимом и деление по содержанию (совместно); в) деление на равные части.

II цикл: а,б) уменьшение и увеличение числа в несколько раз (совместно); в) кратное сравнение.

III цикл: а,б) нахождение одной части числа и числа по величине одной его части (совместно); в) решение задачи: «Какую часть составляет одно число от другого?»

Методическая система изучения этих задач аналогична той, которая существует для простых задач первой ступени (на сложение и вычитание).

Одновременное изучение умножения и деления по содержанию. На двух-трех уроках (не больше!), посвященных умножению, выясняется смысл понятия умножения как свернутого сложения равных слагаемых (о действии деления на этих уроках пока не говорится). Этого времени достаточно для изучения таблицы умножения числа 2 на однозначные числа.

Обычно учащимся показывается запись по замене сложения умножением: 2+2+2+2=8; 2*4=8. Здесь связь между сложением и умножением идет в направлении «сложение-умножение». Уместно тут же предложить учащимся упражнение, рассчитанное на появление обратной связи вида «умножение- сложение» (равных слагаемых): рассматривая эту запись, учащийся должен понять, что требуется число 2 повторять слагаемым столько раз, сколько показывает множитель в примере (2*4=8).

Сочетание обоих видов упражнении есть одно из важных условий, обеспечивающих сознательное усвоение понятия «умножение», означающего свернутое сложение.

На третьем уроке (или четвертом, а зависимости от класса) к каждому из известных случаев умножения приводится соответствующий случай деления. В дальнейшем умножение и деление по содержанию выгодно рассматривать только совместно на одних и тех же уроках.

При введении понятия деления необходимо вспомнить соответствующие случаи умножения, чтобы, оттолкнувшись от них, создать понятие о новом действии, обратном умножению.

Стало быть, понятие «умножение» приобретает богатое содержание: оно не только результат сложения равных слагаемых («обобщение сложения»), но и основа, исходный момент деления, которое, в свою очередь, представляет «свернутое вычитание», заменяющее последовательное «вычитание по 2»:

Смысл умножения постигается не столько при самом умножении, сколько при постоянных переходах между умножением и делением, так как деление есть завуалированное, «измененное» умножение. Это и объясняет, почему выгодно впоследствии изучать всегда одновременно умножение и деление (как табличное, так и внетабличное; как устное, так и письменное).

Первые уроки по одновременному изучению умножения и деления должны быть посвящены педантичной обработке самих логических операций, всячески подкрепляемых развернутой практической деятельностью по собиранию и раздаче различных предметов (кубиков, грибов, палочек и т. п.), но последовательность развернутых действий должна оставаться одной и той же.

Результатом такой работы и будут таблицы умножения и деления, записываемые рядом:

по 2*2=4, 4:по 2=2,

по 2*3=6, 6:по 2=3,

по 2*4=8, 8: по 2=4,

по 2*5= 10, 10: по 2=5 и т. д.

Таким образом, таблица умножения строится по постоянному множимому, а таблица деления — по постоянному делителю.

Полезно также предложить учащимся в паре с данной задачей структурно противоположное упражнение по переходу от деления к вычитанию равных вычитаемых.

В повторительных упражнениях полезно предлагать задания такого вида: 14:2==.

Изучение деления на равные части. После того как изучены или повторены совместно умножение числа 2 и деление по 2, на одном из уроков вводится понятие «деление на равные части» (третий вид задачи первого цикла).

Рассмотрим задачу: «Четыре ученика принесли по 2 тетради. Сколько всего тетрадей принесли?»

Учитель объясняет: по 2 взять 4 раза — получится 8. (Появляется запись: по 2*4=8.) Кто составит обратную задачу?

Выполняя умножение, мы собирали тетради. Что будем делать при делении по два?

Страницы: 1 2 3

Информация по теме:

Величина
Этот раздел программы связан с развитием первоначальных представлений у дошкольников о величине предметов контрастных и одинаковых размеров по длине, ширине, высоте, толщине, объему (больше, меньше, одинаковые по величине). Дети учатся словом определять величину предметов: длинный – короткий, широк ...

Исследование отечественных и зарубежных авторов по проблеме влияния речевого поведения родителей на речевое поведение дошкольника
Богатая, правильно интонированная, эмоционально насыщенная литературная речь, доступная пониманию ребенка, безусловно, стимулирует развитие детской речи, в отличие от бедной, безграмотной, невыразительной, которая тормозит речевое развитие. Кроме влияния языкового окружения на становление речи, сле ...

Продуктивные методы обучения
Для простого процесса обучения характерно наличие начальных условий, промежуточных результатов или задачи путей их достижения (решения) и конечного результата. Под конечным результатом понимаются планируемые результаты обучения за рассматриваемый период, а под начальными условиями – текущее состоян ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru