Последнее время термин “математическое творчество” все чаще употребляется при попытках описания содержания математического образования в средней ступени школы. Для того, чтобы говорить о детском математическом творчестве, сначала определимся с тем, что мы будем под этим понимать.
Согласно этому пониманию творчество обладает следующими важными характеристиками:
Творчество тесно связано с познавательной деятельностью. Математическое творчество - это форма овладения математическими знаниями.
Необходимым условием начала творческого поиска (исследования) является осознание проблемы, ее постановка; процесс творчества - это процесс решения проблемы. В процессе творчества формулировка проблемы претерпевает изменения, уточняется, ее решение распадается на ряд задач. Разными авторами отмечается этапность, цикличность в решении проблемы, то есть наличие истории творческого поиска.
Средством исследования проблемной ситуации, проблемы, задачи и орудием их разрешения является гипотеза . Гипотеза, или проба решения, даже если она неверна, подготавливает представление о верном пути решения. Гипотеза - основная форма творческого мышления.
Отметим, что творчество в математике связано с получением новых утверждений о свойствах математических объектов (этапом выдвижения и проверки гипотез), формулированием новых теорем и поиском способов доказательства и (лишь на последнем этапе) проведением строгих доказательств.
В процессе творчества всегда создается новая вещь (получается новый математический результат), совершается открытие, применяются либо новые средства, способы.
А.Т. Шумилин выделяет четыре этапа движения творчества (которые зависят от того, какие задачи на нем решаются):
осознание, постановка, формулирование проблемы.
нахождение принципа решения проблемы, нестандартной задачи (решающая гипотеза, идея изобретения, замысел).
обоснование и развитие найденного принципа, теоретическая разработка, конкретизация и доказательство гипотезы (научное творчество). А также разработка плана экспериментальной проверки гипотезы, реализации замысла, идеи и т.д.
практическая проверка гипотезы, реализация изобретения, объективизация результатов.
Заметим, что вышеперечисленные этапы тесно связаны с этапами решения учебно-исследовательских задач в подростковой школе. Приведем эти этапы:
Постановка проблемы в исследовании предмета (фиксация затруднений, появление у учащихся проверки и обоснования).
Гипотезирование (переформулировка проблемы в форме гипотез, требующих проверки и обоснования).
Формулировка и обоснование утверждений, появление теорем. Построение «маленькой теории».
Оформление полученных знание для применения(описание логики рассуждений, составление культурного текста, написание «статьи» по предмету).
Практическое применение полученных знаний (решение класса аналогичных задач, перенос полученных способов исследования на другой материал).
В случае математического творчества эти этапы фактически идентичны, т.е. предполагают постановку проблемы, процесс продуцирования правдоподобных утверждений (гипотез) и их обоснование, презентацию результатов либо как теоретического знания, либо как практического. Таким образом, подростковое математическое творчество, есть фактически осуществление исследовательской деятельности.
Однако нужно выделить некоторые отличия математического творчества от решения учебно-исследовательской задачи. А именно:
Творчество учащегося отмечено наличием активной личностной позиции по отношению к познанию, личной заинтересованностью в творческой деятельности, эмоционально окрашенным отношением к исследуемому материалу.
При решении учебно-исследовательских задач для учащегося важно приобрести умение решать подобные задачи, а сам результат является второстепенным.
Отличительной характеристикой математического творчества является значимость результата для учащегося. Однако результат творчества подростка обычно является объективно известным в науке, но как индивидуально, “психологически новым”, т.е. достигнутым собственными силами ребенка. Либо объективно новым по отношению к материалу школьной программы.
Информация по теме:
Опыт изучения ценностных ориентаций школьников на примере учащихся 6 а
класса МОУ СОШ №1
Тема нашего исследования: ценностные ориентации учащихся. Цель исследования: изучить ценностно-мотивационную сферу учащихся. Для выявления ценностных ориентаций учащихся нами была использована методика «Ценностные ориентации» М. Рокича. Данная методика представляет собой тест личности, направленный ...
Методы, используемые в проведении круговой тренировки
Внешний признак круговой тренировки состоит в том, что занятие ведется как бы по кругу: устанавливается количество и содержание упражнений, которые занимающееся должны выполнить в заданной последовательности, строго соблюдая величину нагрузки и продолжительность отдыха. Затем после кратковременного ...
Понятие «стертая дизартрия», как медико-психолого-педагогическая проблема
Стертая дизартрия - речевая патология, проявляющаяся в расстройствах фонетического и просодического компонентов речевой функциональной системы и возникающая вследствие невыраженного микроорганического поражения головного мозга (Л.В. Лопатина). Стертая дизартрия встречается очень часто в логопедичес ...