Рис 7б
Находим линию LM пересечения плоскости треугольника ABC с проектирующей плоскостью R, проходящей через данную прямую DE.
В пересечении прямых LМ и DE, лежащих в одной плоскости R, находим искомую точку X, которая на чертеже определяется своим изображением и изображением своей проекции Х1 на плоскость П.
Задача 3. Определить точку пересечения плоскости Q, заданной следом АВ и точкой С, с прямой DE (рис 7в).
Через точку С, принадлежащую плоскости Q, проводим вспомогательную плоскость S, параллельную проектирующей плоскости R, проходящей через данную прямую DE(LC1 || D1E1). Затем находим линию LC пересечения плоскости S с плоскостью Q. Далее строим прямую MX пересечения плоскостей О и R(MX || LC).
Точка X есть искомая точка пересечения, так как она одновременно принадлежит плоскости Q и прямой DE.
Рис 7в
Решением задачи заканчивается обоснование принципов построения прямых, по которым пересекаются плоскости, и точек пересечения прямых и плоскостей. Однако в классе следует решить еще несколько задач, решение которых сводится к построению точек и линий пересечения прямых и плоскостей.
Итак, при изучении задач на построение на проекционном чертеже учащиеся должны знать, что:
Точку пространства считают заданной на проекционном чертеже, если заданы изображение этой точки и изображение се проекции на основную плоскость.
Прямую считают заданной на проекционном чертеже, если заданы две ее точки или если заданы ее изображение и изображение ее проекции на основную плоскость.
Плоскость считается заданной на проекционном чертеже, если заданы три точки этой плоскости, не лежащие на одной прямой, или прямая и точка вне ее, или две пересекающиеся прямые, или две параллельные прямые.
Если все точки, прямые и плоскости изображенной фигуры являются заданными на проекционном чертеже в указанном смысле, то такое изображение называется полным и можно на нем построением отыскать все непустые пересечения прямых и плоскостей изображенной фигуры, т. е. решать различные позиционные задачи.
Информация по теме:
Методы обучения, используемые в дидактических
поисковых моделях
Поисковый подход в рамках моделей направлен на освоение учащимися дидактической модели обучения как организации систематической исследовательской деятельности; модели организации обучения как коммуникативно-диалоговой деятельности, активного обмена мнениями, творческой дискуссии. Учащийся ставится ...
Программа курса «Университетское образование»
Целью курса - повлиять на становление внутренней духовности, интеллектуальной культуры ребенка, а так же формирования проб авторского действия, в понимании Б.Д. Эльконина. Задачи курса: Организовать занятия таким образом, чтобы была предъявлена материальная и духовная культуры университетов в редуц ...
Триединая цель урока как главное условие успешной организации и проведения
урока
Проблема целенаправленности деятельности человека не нова, и в принципе она сводится к утверждению: без цели – нет управления, без цели – нет результата. Цель - это заранее запрограммированный результат, который человек должен получит в будущем в процессе осуществления той или иной деятельности. Тр ...