Математические основы изучения табличного умножения и соответствующих случаев деления

Умножение - арифметическое действие. Обозначается точкой "." или знаком "х" (в буквенном исчислении знаки умножения опускаются). Умножение целых положительных чисел (натуральных чисел) есть действие, позволяющее по двум числам а (множимому) и b (множителю) найти третье число ab (произведение), равное сумме b слагаемых, каждое из которых равно а; а и b называются также сомножителями.

Умножение чисел однозначно и обладает следующими свойствами:

1) ab = ba (коммутативность, переместительный закон);

2) a (bc) = (ab) c (ассоциативность, сочетательный закон);

3) a (b + c) = ab + ac (дистрибутивность, распределительный закон). При этом всегда а ×0 = 0; a×1 = а.

По правилам построения аксиоматической теории определить умножение натуральных чисел можно, используя отношение «непосредственно следовать за» и понятия, введенные ранее.

Предварим определение умножения следующими рассуждениями. Если любое натуральное число а умножить на 1, то получится а, т.е. имеет место равенство а х 1 = а и мы получаем правило умножения любого натурального числа на 1. Но как умножать число а на натуральное число b, отличное от 1? Воспользуемся следующим фактом: если известно, что 7 х 5 = 35, то для нахождения произведения 7 х 6 достаточно к 35 прибавить 7, так как 7 х 6 = 7 х (5+1) = 7 х 5 + 7. Таким образом, произведение а х b΄ можно найти, если известно произведение а х b: а х b΄ = а х b + а.

Отмеченные факты и положены в основу определения умножения натуральных чисел.

Деление при аксиоматическом построении теории натуральных чисел обычно определяется как операция, обратная умножению. Делением натуральных чисел а и b называется операция, удовлетворяющая условию: а : b = с тогда и только тогда, когда b х с = а. Число а : b называется частным чисел а и b, число а – делимым, число b – делителем.

Как известно, деление на множестве натуральных чисел существует не всегда, и такого удобного признака существования частного, какой существует для разности, нет. Есть только необходимое условие существования частного.

В начальном обучении математике определение деления как операции, обратной умножению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с первых уроков ознакомления с делением. Учащиеся должны хорошо понимать, что деление связано с умножением, и использовать эту взаимосвязь при вычислениях. Выполняя деление, например, 48 на 16, учащиеся рассуждают так: «Разделить 48 на 16 – это значит найти такое число, при умножении которого на 16 получится 48; таким числом будет 3, так как 16 х 3 = 48. следовательно, 48 : 16 = 3».

Информация по теме:

Творческая тетрадь для шестого класса по теме “Признак делимости на 11 натуральных чисел”
Настоящий параграф посвящен одному из средств обеспечения выполнения творческих работ по математике, которое мы назвали творческой тетрадью. Творческая тетрадь – это особым образом оформленная система заданий и мест для решения, выстроенная в соответствии с логикой разворачивания исследовательской ...

Психологические основы обучения аудированию
В данной главе необходимо рассмотреть основные точки зрения, концепции и подходы к проблеме аудирования как вида коммуникативной деятельности, охарактеризовать основные механизмы процесса аудирования, рассмотреть сущность механизма аудирования с точки зрения психологии и методики. Термин «аудирован ...

Имиджевые характеристики педагога
B современных исследованиях понятие имидж педагога, учителя трактуется неоднозначно. Авторы акцентируют внимание на отдельных его сторонах. Когда речь идет об имидже учителя, педагога, за основу берется социально-психологический контекст, рассматривается его проявление в ситуациях взаимодействия уч ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru