Реализация организации самостоятельных работ учащихся при изучении темы "Табличное умножение и соответствующие случаи деления"

Педагогика » Роль самостоятельной работы учащихся при формировании у них навыков табличного умножения и соответствующих случаев деления на уроках математики » Реализация организации самостоятельных работ учащихся при изучении темы "Табличное умножение и соответствующие случаи деления"

Страница 1

Мы в своей работе по развитию у учащихся 1-го класса умений самостоятельно работать руководствовались общими выводами и рекомендациями по данной проблеме на уроках в начальных классах, с учётом возрастных и индивидуально-психологических особенностей учеников, а также применяли различные методы и средства обучения.

Для организации самостоятельной познавательной деятельности учащихся в начальной школе обычно используют метод наблюдений. В процессе наблюдения ученики анализируют, сравнивают, делают вывод. Полученные таким образом знания являются более осознанными и тем самым лучше усваиваются. Процесс наблюдения и анализа рассматриваемых объектов, ведущий к обобщению, неразрывно связан с рассуждением, выявлением причинно-следственных связей, с обоснованием тех выводов, к которым приходит ученик в процессе предлагаемых ему заданий. Умение рассуждать самостоятельно формируется, безусловно, в тех случаях, когда учащиеся воспроизводят знакомую им схему рассуждений, действуют по аналогии. В своей ЭОР мы это учитываем.

Например, предлагая решить выражение: 6+8, мы чаще всего сопровождали его вопросом: «Как будешь рассуждать, чтобы найти результат?» (Можно к 6 сначала прибавить 1, получаем следующее число 7, затем ещё прибавить один, получим 8). Но в основе этого рассуждения лежит образец, который учащиеся многократно повторяли на уроках. Таким видом рассуждений мы часто пользовались на уроках математики в 1-м классе.

Но для того, чтобы учащиеся глубоко осознали внутренние взаимосвязи, существующие между суммой и слагаемыми, мы предлагали им такие задания, при выполнении которых они учились бы наблюдать, подмечать изменения, устанавливать их причину и делать соответствующие выводы.

Например. На одной чашке весов гиря в 3 кг, а на другой ─ в 2 кг. Затем на каждую чашку весов добавляются гири по 5 кг.

Такие задания позволяли организовать наблюдения учеников, в процессе которых они самостоятельно приходили к выводам. При этом обязательно результаты своих наблюдений ученики фиксировали с помощью математической записи: 3 > 2, 3 + 5 > 2 +5, 5 = 5.

В процессе обучения очень важно, чтобы деятельность учащихся была подконтрольна. В этом отношении уместно вспомнить слова В.А.Сухомлинского: «…ученик должен не просто слушать и думать, но что-то делать. Думание должно отражаться в делании, лишь тогда на уроке будут думать все, не будет невнимательных, отвлекающихся». Подчеркнём, что приёмы обучения (деятельность учителя) определяли приёмы учения (деятельность учащихся).

Главный путь формирования приёмов познавательной самостоятельной работы лежит в правильной организации самостоятельной деятельности младших школьников. Следовательно, при проведении самостоятельных работ мы выделяли главные учебные приёмы, из которых состояла деятельность учащихся.

В настоящее время много различных рекомендаций по применению тех или иных приёмов, развивающих самостоятельность учащихся в познавательной деятельности. Для формирования навыков самостоятельной работы учитель должен использовать систему специальных методологических приёмов. Мы использовали подходы Н.Ф.Вапрян, которая выделяет три группы таких приёмов.

Приёмы, обеспечивающие правильное понимание учащимися содержания задания для самостоятельной работы и предъявляемых к ним требований.

Для того, чтобы предупредить возможные неясности, мы вместе с заданием показывали учащимся образец его выполнения.

Например, учащимся нужно было самостоятельно выполнить задание: «Реши примеры, проверяя ответ умножением»:

48 : 24 84 :14 87 :29

32 : 16 51 : 17

Ученикам дали образец решения первого примера:

48: 24 = 2; 24 х 2 = 48.

2. Приёмы, позволяющие учитывать индивидуальные особенности учащихся.

Например, учащимся нужно было решить задачу: «Сколько килограммов масла получится из 75л. молока, если из 25л. молока получается 1 кг масла?»

Сильным учащимся было предложено задание: «Реши задачу. Составь похожую задачу со следующими данными: 3 кг., 75 л., 25 л.».

Более слабым ученикам вместе с условием задачи мы дали чертёж, иллюстрирующий её содержание.

75л. ─ ? кг.

25л. ─ 1 кг.

Приёмы, обеспечивающие формирование у учащихся навыков самоконтроля.

Н.Ф. Вапняр предлагает два вида приёмов такого рода:

1-й. Учащимся предлагается задание и ряд числовых значений. Требуется проверить, есть ли среди этих чисел ответ к данному примеру [5].

2-й. Учащимся даётся задание решить систему примеров. Одновременно им сообщается число, которое равно, например, сумме полученных в этих примерах ответов.

Эти приёмы позволяют осуществлять эффективный контроль за самостоятельной работой учащихся.

В процессе самостоятельной работы встречаются различные виды деятельности учащихся:

─ самостоятельная деятельность по образцу, предложенному учителем;

─ применение знаний в аналогичных условиях;

─ творческая деятельность. Мы это учитывали.

Организуя самостоятельную работу, мы обычно предлагали всему классу общее задание (или дифференцировали задания по вариантам: два или четыре). Задания в каждом из вариантов чаще всего были аналогичны по содержанию и требовали от учащихся использования однородных способов выполнения работы. Например, давалось задание:

Страницы: 1 2 3 4 5 6

Информация по теме:

Технологии воспитания
Рассмотрим как пример технологию «жесткого» коллективного воспитания великого педагога А.С. Макаренко, технологию гуманного коллективного воспитания педагога В.А. Сухомлинского и современные тенденции, и принципы организации воспитательной деятельности в общеобразовательной школе разработанные веду ...

Программные требования к сюжетным задачам в 3 классе
Объем изучаемого в 3-м классе по «Программе по математике в 1-4 клас-сах начальной школы» материала для подготовки к решению сюжетных задач: - нумерация и порядок образования целых чисел от 1 до 1000, число 0; - понятие операций сложения и вычитания (слагаемое, уменьшаемое, вычитаемое, результат (с ...

Рабочее место учащегося
Рабочее место учащихся – это определенная часть площади учебной мастерской с наиболее целесообразным расположением оборудованием, инвентарем, приспособлениями и другой оснасткой. Основные компоненты рабочего места учащегося: определенная площадь учебной мастерской, необходимая для расположения и но ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru