Творческая тетрадь для шестого класса по теме “Признак делимости на 11 натуральных чисел”

Педагогика » Творческая тетрадь как средство обеспечения выполнения творческих работ по математике для учащихся 6 классов » Творческая тетрадь для шестого класса по теме “Признак делимости на 11 натуральных чисел”

Страница 1

Настоящий параграф посвящен одному из средств обеспечения выполнения творческих работ по математике, которое мы назвали творческой тетрадью. Творческая тетрадь – это особым образом оформленная система заданий и мест для решения, выстроенная в соответствии с логикой разворачивания исследовательской задачи. Далее будет описано содержание тетради, ее структура, нормы оформления, а также анализ апробации и методика работы с ней.

Особое место в школьной программе занимает изучение теории целых чисел. Признаки делимости чисел являются важным элементом этой теории. Они быстро позволяют определить, делится ли одно число на другое в том случае если не нужно знать результата деления. В школьной программе признаки делимости изучаются в пятом классе. Поэтому можно ожидать, что шестикласснику постановка задачи поиска признака делимости является знакомой и понятной, а поиск новых признаков может быть интересным и полезным. Т.е. не потребуется особых действий по включению ребенка в проблему. Поэтому мы решили в качестве темы для творческой работы выбрать признак делимости на число, который шестикласснику еще не известен, а именно делимости на 11.

В мы нашли идею доказательства этого признака и его словесную формулировку:

Если сумма цифр данного числа через одну равна сумме остальных цифр через одну или разность этих сумм делится на 11, то и данное число делится на 11.

Мы сформулировали этот признак на математическом языке, используя позиционную запись числа, и получили строгое доказательство, следующего утверждения.

Пусть произвольное натуральное число.

Теорема 1. Если, при , делится на 11;

при , делится на 11,

то число делится на 11.

Пытаясь провести строгое доказательство теоремы 1, мы заметили, что признак можно легко распространить на произвольную систему счисления, т.е. получить признак делимости на в системе счисления по основанию .

Пусть произвольное число, - основание системы счисления, {0, 1, …, }.

Теорема 2. Если, при , делится на ;

при , делится на ,

то число делится на .

Страницы: 1 2 3 4 5 6

Информация по теме:

Историко-педагогическая динамика процесса взаимодействия физики как учебной дисциплины и технического образования в СССР
В современных теоретических и поисковых исследованиях в области методики преподавания физики для инженерных специальностей очевиден дефицит историко-педагогического знания. Это отрицательно сказывается на основательности и надежности, разрабатываемых сегодня идей и предложений педагогических наук, ...

Тенденции гуманизации и демократизации образования
В Европу идеи гуманизма проникли позже (XV — XVI вв.), они нашли свою почву в русском обществе и со временем трансформировались в русскую гуманистическую традицию. По утверждению философа В.А. Малинина, к русской гуманистической традиции следует подходить, как к историко-культурному явлению, в кото ...

Роль педагога в развитии креативности старших дошкольников в игре
В данном параграфе мы попытаемся выяснить роль педагога в развитии творческих способностей у дошкольников в игре. Нам необходимо остановиться на традиционных подходах к рассмотрению данной проблемы. При этом особое внимание уделить тем педагогическим условиям, которые специфически влияют на развити ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru