Результат получен после поворота и второго конца на угол . Искомая работа равна половине работы по перемещению доски на L
.
Задача: В полусферический колокол, плотно лежащий на столе, наливает через отверстие вверху воду. Когда вода доходит до отверстия, она приподнимает колокол и начинает вытекать снизу. Радиус колокола R, плотность воды . Найти массу колокола М. (рис.37)
1-й способ. Прямое динамическое решение задачи (рис.41, а) F=Mg+. F=
, M=
2-й способ. Поместим систему в цилиндрический сосуд высотой и радиусом R. (рис.37, б)
Пусть колокол тонок и его масса мала. Давление на колокол снаружи и изнутри равно во всех точках. Если колокол убрать, то
M= ()
, M= (
)
=
рис.37
Задача: Найти кинетическую энергию стержня, вращающегося в горизонтальной плоскости вокруг вертикальной оси, проходящей через его середину. Известны: (рис.38, а)
Для половины стержня (рис.38, б) . Но К=2
, следовательно К=
.
рис.38
Для того чтобы в полной мере овладеть использованием вышеизложенного метода необходимо решить не одну задачу с применением данного метода.
Метод дифференцирования и интегрирования
В основе метода лежат два принципа:
1) принцип возможности представления закона в дифференциальной форме;
2) принцип суперпозиции.
При использовании метода дифференцирования и интегрирования, разделяют тело на материальные точки или траекторию и время на такие промежутки, на которых процесс можно считать равномерным. Далее по принципу суперпозиций производят суммирование (интегрирование).
Задача: Найти силу гравитационного взаимодействия между расположенными на одной прямой материальной точкой массой m и однородным стержнем длиной L и массой M. Расстояние от точки до ближайшего конца стержня равно С. (рис.39)
рис.39
Выделяем на расстоянии х от точки элемент стержня длиной dx и массой dx. Сила его взаимодействия с точкой dF=
.
Поэтому F=.
Задача:
Найти кинетическую энергию однородного диска радиусом R и массы M, вращающегося с постоянной угловой скоростью вокруг оси, проходящей через центр диска перпендикулярно его плоскости.
Разобьем диск на кольца шириной dx, каждое из которых отстоит от оси вращения на x [0: R]. Масса каждого кольца, вращающегося с линейной скоростью
: dm=
Величиной (dx) 2 в сравнении с 2xdx можно пренебречь.
dk=
Откуда К=
Метод дифференцирования и интегрирования применяется также для вывода формул.
Вариационные принципы механики, метод виртуальных перемещений
Невариационные принципы устанавливают закономерности движения, совершаемого системой под действием приложенных сил.
Вариационные принципы разделяются на дифференциальные и интегральные. Дифференциальный - это метод виртуальных перемещений, интегральный - следствие из принципа наименьшего действия.
Принцип: Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ, действующих на систему сил при любом виртуальном перемещении, равнялась нулю.
Информация по теме:
Информационно-развивающие методы обучения
К информационно-развивающим относятся методы, с помощью которых получают учебную информацию в готовом виде - в изложении преподавателя (лекция, рассказ, объяснение, беседа), или диктора (учебный кинофильм), или путем самостоятельного чтения учебника, учебного пособия, обучающей программы (программи ...
Опыт осуществления нравственного воспитания на уроках литературы
Уроки литературы наиболее благоприятны для осуществления нравственного воспитания. Произведения, входящие в школьную программу, содержат материал, способствующий духовному развитию личности. Как мы уже упоминали ранее, основной задачей нравственного воспитания в 6 классе является: «воспитание нравс ...
Научно-теоретические основы констатирующего и формирующего экспериментов
Эксперимент означает пробу, опыт. Это один из основных методов научного познания вообще, психологического исследования в частности. Например, от наблюдения эксперимент отличается активным вмешательством в ситуацию со стороны исследователя, осуществляющего планомерное манипулирование одной или неско ...