рис. 2.7
Получим разложение тринома . Для этого воспользуемся полученными формулами: формулой бинома Ньютона и формулой биномиальных коэффициентов.
В полученной формуле часть:
выражает основание треугольника Паскаля, т.е. триномиальные коэффициенты, которые лежат на внешней стороне -го сечения пирамиды. А часть полученной формулы:
выражает триномиальные коэффициенты, лежащие внутри
-го сечения пирамиды.
В литературе разложение тринома представляют в виде:
,
где - триномиальные коэффициенты,
,
,
– неотрицательные целые числа, которые выражаются формулой:
Для триномиальных коэффициентов справедлива рекуррентная формула:
с начальными условиями ;
.
Триномиальные коэффициенты удовлетворяют условиям:
и равенствам
,
указывающих на наличие трех осей симметрии.
Итак, наше исследование показало, что можно обобщить формулы квадрата суммы и куба суммы по степени, получив разложение формулы бинома Ньютона. Биномиальные коэффициенты можно найти либо при помощи треугольника Паскаля, записав коэффициенты разложения в виде треугольной таблицы и выведя очевидное правило, либо посредством формул числа сочетаний , которые возможно вывести. Также оказался возможным построение пирамиды Паскаля и вывод разложения для тринома. При этом нужно отметить, что если для вывода разложения бинома литература является средством подтверждения полученных результатов, то для разложения тринома литература является дополняющим средством к полученным результатам. Полученные результаты исследования были сопоставлены и дополнены материалом книг по этим вопросам.
Моя работа была направлена на разрешение проблем, возникающих у учителей, которые не имеют опыта работы с детскими творческими работами, но хотели бы заниматься ими со своими учениками. Для этого было разработано учебно-методическое средство, которое мы назвали творческой тетрадью – особым образом оформленная тетрадь, содержащая логику предъявления исследовательской задачи и специальным образом представленные задания. Используя эту тетрадь, учитель может освоить идею руководства детским исследованием в математике. Кроме этого, тетрадь также должна обеспечивать эмоциональную включенность и сохранение устойчивого интереса к теме у шестиклассника, инициировать возникновение у него своих вопросов, творческое отношение к предложенным задачам.
Информация по теме:
Опыт внедрения религиозного компонента в учебные программы государственных
школ
В современной педагогической практике ещё не сложились стандарты обучения в области религиозного образования. Это затрудняет не только работу учителей, но и влияет на усвояемость нового материала учениками. Что бы понять роль подобного предмета не только в школьной программе, но и системе среднего ...
Анализ результатов исследования физической подготовленности в процессе
возрастного развития
1. Результаты теста «Прыжок в длину с места» (см). Таблица №1 № п/п Ф.И. учащегося Результаты по классам, см 4 кл. 5 кл. 6 кл. 7 кл. 8 кл. 9 кл. 10 кл. 1. Алексей Б. 165 180 185 190 210 235 225 2. Александр Б. 120 155 160 160 180 190 200 3. Юрий В. 125 150 160 160 170 200 220 4. Александр Д. 150 16 ...
Возрастные особенности
детей 5-6 лет
Рассматривая вопросы педагогических воздействий на детей, необходимо всегда учитывать их возрастные особенности. У детей 5-6 лет продолжается интенсивное сенсорное развитие, причем процессы ощущения, восприятия, представления развиты у ребенка данного возраста значительно лучше, чем мышление. В 5-6 ...