рис. 2.7
Получим разложение тринома
. Для этого воспользуемся полученными формулами: формулой бинома Ньютона и формулой биномиальных коэффициентов.
В полученной формуле часть:
выражает основание треугольника Паскаля, т.е. триномиальные коэффициенты, которые лежат на внешней стороне
-го сечения пирамиды. А часть полученной формулы:
выражает триномиальные коэффициенты, лежащие внутри
-го сечения пирамиды.
В литературе разложение тринома
представляют в виде:
,
где
- триномиальные коэффициенты,
,
,
– неотрицательные целые числа, которые выражаются формулой:
Для триномиальных коэффициентов справедлива рекуррентная формула:
с начальными условиями
;
.
Триномиальные коэффициенты удовлетворяют условиям:
и равенствам
,
указывающих на наличие трех осей симметрии.
Итак, наше исследование показало, что можно обобщить формулы квадрата суммы и куба суммы по степени, получив разложение формулы бинома Ньютона. Биномиальные коэффициенты можно найти либо при помощи треугольника Паскаля, записав коэффициенты разложения в виде треугольной таблицы и выведя очевидное правило, либо посредством формул числа сочетаний
, которые возможно вывести. Также оказался возможным построение пирамиды Паскаля и вывод разложения для тринома. При этом нужно отметить, что если для вывода разложения бинома литература является средством подтверждения полученных результатов, то для разложения тринома литература является дополняющим средством к полученным результатам. Полученные результаты исследования были сопоставлены и дополнены материалом книг по этим вопросам.
Моя работа была направлена на разрешение проблем, возникающих у учителей, которые не имеют опыта работы с детскими творческими работами, но хотели бы заниматься ими со своими учениками. Для этого было разработано учебно-методическое средство, которое мы назвали творческой тетрадью – особым образом оформленная тетрадь, содержащая логику предъявления исследовательской задачи и специальным образом представленные задания. Используя эту тетрадь, учитель может освоить идею руководства детским исследованием в математике. Кроме этого, тетрадь также должна обеспечивать эмоциональную включенность и сохранение устойчивого интереса к теме у шестиклассника, инициировать возникновение у него своих вопросов, творческое отношение к предложенным задачам.
Информация по теме:
Содержание элективного курса «Основы теории вероятностей и математической
статистики»
Как уже ранее говорилось, в научно методической литературе выделяют три типа элективных курсов: предметные, межпредметные и не входящие в базисный учебный план. Наша задача составить содержание элективного курса, не входящего в базисный учебный план. Для того, чтобы определить содержание элективног ...
Анализ тенденций развития биологического образования
Моделирование ситуаций научного поиска, развитие эмоционально-чувственного отношения к живым системам приносят радость познания которой так мало на уроках биологии с использованием репродуктивных методов. "Открытия", "озарения", интеллектуальные и практические "изобретения& ...
Проблема определения тотальных размеров тела у детей и подростков
Как правило, в педагогической практике физическое развитие ребёнка оценивается, главным образом, по изменениям с возрастом тотальных размеров тела (рост, вес и окружность грудной клетки). Исследования в этой области позволили установить, что наиболее интенсивный прирост в морфологическом развитии р ...