рис. 2.7
Получим разложение тринома . Для этого воспользуемся полученными формулами: формулой бинома Ньютона и формулой биномиальных коэффициентов.
В полученной формуле часть:
выражает основание треугольника Паскаля, т.е. триномиальные коэффициенты, которые лежат на внешней стороне -го сечения пирамиды. А часть полученной формулы:
выражает триномиальные коэффициенты, лежащие внутри
-го сечения пирамиды.
В литературе разложение тринома представляют в виде:
,
где - триномиальные коэффициенты,
,
,
– неотрицательные целые числа, которые выражаются формулой:
Для триномиальных коэффициентов справедлива рекуррентная формула:
с начальными условиями ;
.
Триномиальные коэффициенты удовлетворяют условиям:
и равенствам
,
указывающих на наличие трех осей симметрии.
Итак, наше исследование показало, что можно обобщить формулы квадрата суммы и куба суммы по степени, получив разложение формулы бинома Ньютона. Биномиальные коэффициенты можно найти либо при помощи треугольника Паскаля, записав коэффициенты разложения в виде треугольной таблицы и выведя очевидное правило, либо посредством формул числа сочетаний , которые возможно вывести. Также оказался возможным построение пирамиды Паскаля и вывод разложения для тринома. При этом нужно отметить, что если для вывода разложения бинома литература является средством подтверждения полученных результатов, то для разложения тринома литература является дополняющим средством к полученным результатам. Полученные результаты исследования были сопоставлены и дополнены материалом книг по этим вопросам.
Моя работа была направлена на разрешение проблем, возникающих у учителей, которые не имеют опыта работы с детскими творческими работами, но хотели бы заниматься ими со своими учениками. Для этого было разработано учебно-методическое средство, которое мы назвали творческой тетрадью – особым образом оформленная тетрадь, содержащая логику предъявления исследовательской задачи и специальным образом представленные задания. Используя эту тетрадь, учитель может освоить идею руководства детским исследованием в математике. Кроме этого, тетрадь также должна обеспечивать эмоциональную включенность и сохранение устойчивого интереса к теме у шестиклассника, инициировать возникновение у него своих вопросов, творческое отношение к предложенным задачам.
Информация по теме:
Вторая младшая группа. Количества
Работа с детьми трех лет по развитию элементарных математических представлений в основном направлена на развитие представлений о множестве. Ребят учат сравнивать два множества, сопоставлять элементы одного множества с элементами другого, различать равенство и неравенство групп предметов, составляющ ...
Методические разработки по теме: Урок по теме: «Строение атома. Химическая
связь»
Цели: обобщить и повторить знания учащихся по данной теме; выявить степень усвоения материала, уметь составлять электронные формулы атомов, схемы видов химической связи, решать творческие задания. Оборудование: периодическая система химических элементов Д.И.Менделеева; портрет Д. И. Менделеева; кар ...
Динамика речевого развития в дошкольном возрасте
Когда речь ребёнка освобождается от опоры на воспринимаемую ситуацию, на жест или на действие, это является началом нового периода речевого развития - периода развития языка ребенка в процессе речевой практики, начинающегося примерно с двух с половиной лет и завершающегося к шести годам. В этот пер ...