Описание организационной формы передачи учителям методики работы с творческими работами

Педагогика » Творческая тетрадь как средство обеспечения выполнения творческих работ по математике для учащихся 6 классов » Описание организационной формы передачи учителям методики работы с творческими работами

Страница 7

Бином Ньютона можно обобщить по количеству слагаемых, т.е. найти разложение для , однако вывод данной формул является довольно сложным для школьника. Поэтому рассмотрим частный случай формулы, формулу для суммы трех переменных, т.е. для тринома. Выведем разложение для тринома , а также арифметическую таблицу триномиальных коэффициентов.

Рассмотрим ряд формул, являющихся частными случаями для , которые можно получить раскрыв скобки и приведя подобные слагаемые:

рис. 2.5

Построим арифметическую таблицу из триномиальных коэффициентов, данная таблица будет представлять собой пирамиду, которую называют пирамидой Паскаля (рис. 2.5). Видим, что по трем внешним ребрам пирамиды стоят единицы. Каждая из трех боковых граней представляет собой треугольник Паскаля. В n-ом сечении (треугольнике) пирамиды (n ≥ 0), параллельном основанию, располагаются триномиальные коэффициенты (которые обозначаются ) подобно биномиальным коэффициентам в треугольнике Паскаля.

Рассмотрим сечения пирамиды для , и (рис. 2.6):

рис. 2.6

Видим, что коэффициенты, лежащие внутри сечения пирамиды в углу, равны сумме двух коэффициентов располагающихся на внешней стороне сечения, которые лежат на одной прямой с этим коэффициентом. Правило для нахождения триномиальных коэффициентов, стоящих внутри сечения пирамиды, вызвало большие трудности, поэтому правило вывода триномиальных коэффициентов было взято из литературы.

Известно, что любой внутренний элемент пирамиды Паскаля, стоящий в n -ом сечении, равен сумме трех элементов, расположенных в углах элементарного треугольника - го сечения пирамиды. Построение n-го сечения связывают с равенством :

;

Сечение получается из треугольника Паскаля, основанием которого служит -я строка треугольника, умножением элементов его строк почленно на элементы основания, повернутого против часовой стрелки на угол . Рис. 2.7, а иллюстрирует построение сечения при n=4. Расположение элементов сечения показано на рис. 2.7, .

Страницы: 2 3 4 5 6 7 8 9

Информация по теме:

Самосознание дошкольника
А.Н. Леонтьев рассматривал дошкольный возраст как время фактического складывания будущей личности. Этот период считается наиболее сензитивным к сфере человеческих отношений. Социальная направленность всей личности ребёнка становится определяющей в его психическом развитии. Процесс социального взрос ...

Субъективное отношение к природе и его роль в формировании современного экологического сознания
Одной из основных задач образования сегодня является формирование у социума в целом и у каждой отдельной личности экологического сознания экоцентрического типа. Экоцентрический тип экологического сознания – это система представлений о мире, для которой характерны: ориентированность на экологическую ...

Место дидактических поисковых моделей в подходах к преподаванию биологии
От овладения учащимися учебными умениями практического, интеллектуального и общеучебного характера зависит эффективность познавательной деятельности учащихся на уроке. А овладение различными учебными умениями, в свою очередь, зависит от организации познавательной деятельности школьников на уроке. П ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru