Например, выполнение штрафного броска в баскетболе есть испытание, а попадание в кольцо – исход. Другой пример исхода – это выпадение определенного числа очков при бросании игральной кости. В отличии от других событий исходы еще называют элементарными событиями, желая подчеркнуть, что эти события состоят только из одного исхода и не делимы на более мелкие.
Далее следует сказать, что в теории вероятностей события обозначаются прописными (заглавными) латинскими буквами: A, B, C, D…
После введения трех важных понятий: случайный эксперимент, случайное событие, исход, модно переходить к определению вероятности.
Первым должно быть рассмотрено статистическое понятие вероятности.
Рассмотрим некоторое количество испытаний, в результате которых появилось событие А. Пусть было произведено N испытаний, в результате которых событие А появилось ровно n раз. Тогда отношение называют относительной частотой (частость).
При большом количестве повторений испытания частость событий мало изменяется и стабилизируется около определенного значения, а при небольшом количестве повторений она может принимать различные значения. Поэтому интуитивно ясно, что при большом количестве повторений испытания частость события будет стремиться к определенному числовому значению. Такое значение принято называть вероятностью события А и обозначают Р(А).
Таким образом, вероятностью случайного события А называется число Р(А), к которому приближается относительная частота этого события при большом повторении числа экспериментов.
В математике неограниченное число повторений принято записывать в виде предела при N стремящегося к бесконечности: .
Данное определение называют статистическим определением вероятности. Далее следует объяснить, что найти вероятность с помощью этого определения нельзя, так как нет гарантий, что относительная частота будет к чему-то приближаться; также нельзя сказать, насколько много повторений эксперимента нужно сделать, чтобы полученная частота достаточно хорошо приближала вероятность.
Исходя из этого определения, учащиеся могут установить, что вероятность заключена в интервале: . Так как n всегда больше либо равно N.
Следует предложить задания на проведение серии экспериментов с целью оценить вероятности возможных исходов эксперимента. При этом можно использовать групповую форму работы и в конце объединить результаты всех групп для получения выводов об относительной частоте событий. Примером такого задания может служить подбрасывание монеты. Это является простым и наглядным испытанием. Практика человека говорит о том, что при большом числе бросаний примерно в 50% испытаний выпадет «орёл», а в 50% – «решка».
После этого следует перейти к изучению классической вероятности. Введение другого определения можно обосновать тем, что не в каждом случае можно провести длинную серию экспериментов. В некоторых случаях вероятности событий могут быть легко определены исходя из условий испытаний. Здесь необходимо вспомнить понятия элементарного исхода.
Пусть испытание имеет n возможных исходов, то есть событий, которые могут появиться в результате данного испытания. При каждом повторении возможно появление только одного из данных исходов (то есть все n исходов несовместны). Кроме того, по условиям испытания нельзя сказать какие исходы появляются чаще других, то есть все исходы являются равновозможными. Допустим теперь что при n равновозможных исходах интерес представляет событие А, которое появляется только при m исходах и не появляется при остальных исходах. Принято говорить, что в данном испытании имеется n случаев, из которых m благоприятствуют появлению события А.
Информация по теме:
Внимание как условие познавательной активности
Одно из важнейших условий активизации учебно-познавательной деятельности — мобилизация внимания всех учащихся группы и оперативное управление им не каждом этапе урока. Видимо, любой метод обучения станет активным, если он реализуется на фоне интенсивного и устойчивого внимания учащихся. Психологиче ...
Эффективность применения домашних заданий на уроках
физической культуры
В сентябре 2001 г. нами были протестированы учащиеся 8 а класса по тестам, которые входят в комплексную программу физического воспитания учащихся 1-11 классов. По списку в этом классе 23 учащихся, из них 5 учащихся занимаются в специальной медицинской группе, один - на домашнем обучении. Всего тест ...
Диагностика творческих способностей у дошкольников
Гипотеза: Анализ психолого-педагогической литературы позволил нам предположить, что развитие творчества у старших дошкольников в игре возможно, если создаются следующие условия: создание эмоционально-благополучной атмосферы в группе детского сада; гарантия свободы и самостоятельности в игре ребенка ...