Методика преподавания теории вероятностей и математической статистики в средней школе

Страница 4

Нужно дать несколько упражнений на вычисление выражений с факториалами, чтобы учащиеся лучше овладели навыками работы с ними.

Далее рассматривается теорема о выборе с учетом порядка.

Общее количество выбора k элементов из n элементов с учетом порядка определяется формулой и называется числом размещений из n элементов по k элементов.

Приведем пример.

В областных соревнованиях по футболу участвует 8 команд. Требуется определить сколькими способами можно составить группу их 4 команд.

Другими словами, нам нужно выбрать 4 футбольных команды из 8 команд, то есть: .

Далее рассматривается теорема о выборе без учета порядка.

Общее количество выборок в схеме выбора k элементов из n без возвращения и без учета порядка определяется формулой и называется числом сочетаний из n элементов по k элементов.

Рассмотрим пример.

На занятии по физкультуре присутствовало 20 человек. Учитель попросил двух человек принести из раздевалки мячи. Сколькими способами можно выбрать учеников, для того чтобы они принесли мячи?

Решение. Порядок в котором будут выбраны ученики не существенен, следовательно: способов.

После изучения основных формул комбинаторики следует дать учащимся задачи на вычисление вероятности, для решения которых необходимо применять комбинаторные формулы.

Далее вводим основные операции над событиями. При введении не следует пользоваться кругами Эйлера, так как учащиеся мало знакомы с теорией множеств. После определения операции можно привести пример описывающий данную операцию.

Событие С называется суммой А+В, которое представляет собой событие, состоящее из появлении хотя бы одного из событий А и В.

Бросается кубик. Событие А – выпадет число 2. Событие В – выпадет нечетное число. Тогда событие С=А+В. Будет состоять в выпадении двойки или нечетного числа.

Событие C называется произведением A и B, если оно состоит из всех событий, входящих и в A, и в B.

С=А∙В (А – выпадет 3, В – выпадет нечетное число). Тогда С состоит в выпадении только числа 3, так как 3 является нечетным числом.

Противоположным событию A, называется событие, состоящее в непоявлении события А. Обозначается противоположное событие символом .

Противоположными событиями являются промах и попадание при выстреле, или выпадении герба или цифры при одном подбрасывании монеты.

Далее дадим определения совместных, несовместных событий и зависимых, независимых событий.

События A и B называются несовместными, если они не могут произойти в результате одного испытания. События А и В называются совместными, если они могут произойти в результате одного испытания.

Здесь также следует рассмотреть примеры, для лучшего усвоения этих понятий.

Испытание – один раз подбрасываем монету. События: А – выпадет орел; В – выпадет решка. События А и В несовместны, так как при подбрасывании одной монеты одновременно не выпадет орел и решка.

Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Страницы: 1 2 3 4 5 6 7 8 9

Информация по теме:

Характеристика упражнения, приучения как методов воспитания, особенности их реализации на занятиях физической культурой и спортом
Реализацию целей воспитания и образования называют педагогическим процессом. Систему воспитательных и образовательных средств, характеризующих совместную деятельность педагогов и учащихся, именуют методом воспитания либо методом обучения. Разделение средств и методов на воспитательные и образовател ...

Основные понятия и направления в проведении занятий в условиях ФГТ
Федеральные государственные требования – это совокупность требований и правил, позволяющих спланировать развитие дошкольного образования в контексте современных государственных требований. ФГТ полностью меняет систему воспитательной работы в детских дошкольных образовательных учреждениях, что позво ...

Психолого-педагогическая характеристика детей старшего дошкольного возраста
В данном параграфе рассмотрим психолого-педагогическую особенность детей старшего дошкольного возраста. Как показал анализ литературы по данной проблеме (А. Валлон, А.Л. Венгер, Р.Я. Гузман, В.В. Давыдов, А.В. Запорожец, Я.Л. Коломинский, Г.Г. Кравцов, Е.Е. Кравцова, В.В. Рубцов, Л.М. Фридман, Г.А. ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru