Методика преподавания теории вероятностей и математической статистики в средней школе

Страница 9

Для закрепления следует решить задачу.

В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 50 р. и десять выигрышей по 1 р. Найти закон распределения случайной величины Х – стоимости возможного выигрыша для владельца лотерейного билета.

Решение. Напишем возможные значения Х: х1=50; х2=1; х3=0. Вероятности этих возможных значений равны: р1=0,01; р2= 0,1; р3=1-(0,01+0,1)=0,89.

Напишем исходный закон распределения:

Х

50

10

0

p

0,01

0,1

0,89

Контроль: 0,01+0,1+0,89=1

Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки (хi; pi), а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения. Также следует привести пример построения такого многоугольника.

Как мы ранее сказали, закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен, и приходится ограничиваться меньшими сведениями. Также для решения многих задач не нужно знать распределения случайной величины, а достаточно знать лишь некоторые обобщающие числовые характеристики этого распределения.

Одной из таких характеристик является математическое ожидание. Для более наглядного определения рассмотрим подход к этому понятию на конкретном примере.

Пусть имеется дискретная случайная величина Х, которая может принимать значения x1, x2, …, xn. Вероятности которых соответственно равны р1, р2, …, рn. Тогда математическое ожидание М(Х) случайной величины Х определяется равенством: .

После определения математического ожидания ученикам может быть непонятно, где оно может пригодиться. На самом деле математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Для введения дисперсии можно привести следующий пример. На практике часто требуется оценить рассеяние возможных значений случайно величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена. Именно такие задачи решает дисперсия.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонений случайной величины от ее математического ожидания. Дисперсия обозначается, как D(x): D(Х)=M[X-М(Х)]2.

Для вычисления дисперсии часто бывает удобно пользоваться следующей формулой: дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания

D(Х)=M(X)2-[М(Х)]2.

Для оценки рассеяния всевозможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и другие величины.

Средним квадратичным отклонением величины Х называют квадратный корень из дисперсии .

Найти дисперсию случайной величины Х, которая задана следующим законом распределения:

Х

1

2

5

p

0,3

0,5

0,2

Страницы: 4 5 6 7 8 9 10 11 12 13 14

Информация по теме:

Исторический аспект теоретического мышления
В истории философии еще с древности наметилось различие двух типов мышления. С одной стороны, выделялась мыслительная деятельность, направленная на расчленение и описание результатов чувственного опыта, с другой - на раскрытие сущности объектов, внутренних законов их развития. Особенно четко это ра ...

Занимательный материал в организации трудового обучения и воспитания
Основной сферой деятельности детей до 7 — 8 лет является игра. Как важное средство воспитания, она значительное место занимает и в народной педагогике: « .Игры для детей — серьезное занятие, своего рода уроки, готовящие к труду . Игровая деятельность порою сливается с трудовыми праздниками и входит ...

Исходные теоретические позиции урока
С урока начинается учебно-воспитательный процесс, уроком он и заканчивается. Всё остальное в школе играет хотя и важную, но вспомогательную роль, дополняя и развивая всё то, что закладывается в ходе уроков. Каждый новый урок – это ступенька в знаниях и развитии ученика, новый вклад в формирование е ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru