Методика преподавания теории вероятностей и математической статистики в средней школе

Страница 3

В таком случае вероятность можно вычислить, как отношение числа случаев благоприятствующих появлению события А (то есть m), к общему числу всех исходов n: .

Данная формула представляет собой определение вероятности по Лапласу, которое пришло из области азартных игр, где теория вероятностей применялась для определения перспективы выигрыша.

После рассмотрения простейших примеров вычисления вероятности учащимся может показаться, что вычисление вероятностей любого события не вызывает особого труда, поэтому учителю нужно предостеречь учащихся от ошибок. Для этого учащимся может быть предложен следующий алгоритм при решении задач на нахождение вероятности.

Перечислить возможные исходы опыта (полное или частичное).

Обосновать равновозможность перечисленных исходов (можно опираться на прямые указания в тексте задачи: случайно, наугад и т.д.).

Вычислить общее количество исходов (то есть число n).

Описать благоприятные исходы для данного события и вычислить их количество.

Вычислить вероятность по формуле.

Оценить полученный результат.

На первых этапах следует предлагать задачи, в которых число исходов опыта можно пересчитать вручную, без использования формул комбинаторики. После получения ответа необходимо обсудить с учащимися его реальный смысл. Выяснить совпадает ли полученная величина с интуитивным представлением учеников о вероятности, удовлетворяет ли основным свойствам.

Для того чтобы определить вероятность нужно знать количество исходов, а также количество благоприятных исходов. Если количество испытаний мало, то можно вручную перебрать все исходы и выявить среди них благоприятные. Что делать в том случае, если количество испытаний велико?

В таком случае на помощь приходит комбинаторика.

Комбинаторика – раздел математики, который изучает различные комбинации и перестановки предметов. Начинать изучение комбинаторики следует с введения простейших формул. Перед тем как дать ученикам формулу следует поставить какую-либо проблемную задачу, например, перед тем как дать учащимся формулу перестановок можно дать решить следующую задачу.

Сколько чисел можно составить из цифр 1, 2, 3?

Решая данную задачу систематическим перебором, мы найдем, что количество таких чисел будет равно шести. Далее следует изменить условие задачи, увеличив количество цифр до 10. И сказать, что решать данную задачу перебором нерационально, так как на это уйдет слишком много времени. Для решения задач такого вида используется следующая теорема.

Пусть имеется, k групп элементов, причем каждая группа элементов содержит определенное количество элементов, например, 1-ая содержит n1 элемент, 2-ая группа – n2 элементов, тогда i-я группа содержит ni элементов. Тогда общее число N способов, которыми можно произвести такой выбор, равняется .

Учитель должен обратить внимание учащихся на то, что правило умножения подсчитывает упорядоченные наборы, то есть порядок в них важен.

Данную формулу можно применить к решению следующей задачи.

Сколько существует пятизначных натуральных чисел.

Решение. Как известно всего 10 цифр. Представим пятизначное число, как, где вместо первой звездочки можно подставить все цифры кроме 0, так как если подставим 0, то получим четырехзначное число (нам надо пятизначное). Вместо второй звездочки можно подставить любую из 10 цифр, аналогично вместо оставшихся можно подставлять любую из 10 цифр. Таким образом, у нас имеется 5 групп элементов, первая группа содержит 9 элементов, а оставшиеся 4 группы содержать по 10 элементов. Тогда, используя формулу, найдем количество пятизначных чисел: .

Страницы: 1 2 3 4 5 6 7 8

Информация по теме:

Нравственные отношения педагога
В основе нравственных отношений лежат зависимости между предписаниями долженствования и субъективным восприятием этих предписания личностью, между личностными и общественными интересами. Нравственные отношения регулируются моральными принципами, нормами, обычаями, традициями, получившими общественн ...

Экспериментальная работа по изучению уровня сформированности речевых умений детей 2 — 3 летнего возраста
Советский врач и педагог Е.А. Аркин указывал: «Жестами, мимикой, хлопаньем в ладоши, ласковым лепетом ребенок достигает часто того, что ему в этом периоде жизни наиболее нужно, то есть любви, помощи и подчинения себе взрослых». Эмоциональное общение является стержнем, основным содержанием взаимоотн ...

Эмоционально-ценностные отношения как научная категория и предмет педагогического исследования
Сегодня уже стало аксиомой, что современное начальное образование наряду с когнитивным развитием должно ориентироваться и на приобщение ребенка к общественно значимым ценностям, развитие его эмоционально-волевой сферы, формирование ценностного отношения к окружающему миру и действительности, на осн ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru