Программа элективного курса по математике

Страница 15

Определение: Вариационным рядом называется ранжированный в порядке возрастания или убывания ряд вариантов с соответствующими им весами (частотами или частостями).

Определение: накопленная частота niнак показывает сколько наблюдалось вариантов со значениями признака меньших х.

Накопленная частость – отношение накопленной частоты к общему числу наблюдений: wiнак= niнак/n

Теперь полученный нами вариационный ряд позволяет выявить закономерности.

Для задания вариационного ряда достаточно указать варианты и соответствующие им частоты или частости.

Занятия 15-16

Вариационный ряд называется дискретным, если любые его варианты отличаются на постоянную величину.

Вариационный ряд называется непрерывным, если варианты могут отличаться один от другого на сколь угодно малую величину.

В примере мы привели пример непрерывного ряда.

Для графического изображения вариационного ряда используются:

Полигон – служит для изображения дискретного вариационного ряда и представляет собой ломаную, в которой концы отрезков имеют (хi, ni).

Гистограмма служит для изображения интервальных вариационных рядов и представляет собой ступенчатую фигуру из прямоугольников с основаниями, равными интервалам значений признака к=х2-х1. И высоты равные частотам. Если соединить середины верхних оснований прямоугольников отрезками прямой, то можно получить полигон того же распределения.

Кумулятивная прямая (кумулята) – кривая накопленных частот. Для дискретных рядов кумулята представляет ломаную, соединяющую точки (хi, niнак ) или (хi, wiнак). Для интервального вариационного ряда ломаная начинается с точки, абсцисса, которой равна началу первого интервала, а ордината – накопленной частоте, равной нулю. Другие точки соответствуют концам интервалов.

Сформулируем принцип практической уверенности:

Если вероятность события А в данном испытании очень мала, то при однократном выполнении испытания можно быть уверенным в том, что событие А не произойдет, и в практической деятельности вести себя так, как будто событие А вообще невозможно.

Например: отправляясь самолетом в другой город, мы не рассчитываем на возможность погибнуть в авиа катастрофе, хотя вероятность такого события имеется.

Но при многократном повторении испытаний мы не можем считать маловероятное событие А практически невозможным.

Определение: Статистической гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.

Проверяемую гипотезу обычно называют нулевой и обозначают Н0. Также рассматривают альтернативную (конкурирующую гипотезу) Н1 являющуюся отрицанием Н0.

Суть проверки статистической гипотезы состоит в вычислении статистики данной выборки. Затем по выборочному распределению определятся критическое значение. Если статистика больше критического значения, то событие можно считать практически не возможным.

Сравнение двух совокупностей имеет важное практическое значение. На практике часто встречается случай, когда средний результат одной серии эксперимента отличается от среднего результата другой серии.

Пример: В промышленности данная задача возникает при выборочном контроле качества изделий, изготовленных на разных установках или при различных технологических режимах.

Пусть имеются две совокупности, характеризуемые генеральными средними х и у. И дисперсиями для которых найдены средние арифметические и выборочные дисперсии. Необходимо проверить гипотезу Н0 о равенстве генеральных средних. Тогда статистика находится по следующей формуле:

Страницы: 10 11 12 13 14 15 16 17 18 19 20

Информация по теме:

Задачи, решаемые при введении проекционного чертежа
Первой группой таких задач является упражнения, раскрывающие, что неопределенность восстановления оригинала по чертежу устранена на проекционном чертеже. Учитель показывает, что на проекционном чертеже «точка» изображает только точку оригинала, «прямая» - прямую, «плоскость» - плоскость. На проекци ...

Нарушение поведения как психолого-педагогическая проблема
Отклоняющееся поведение- это поведение, которое не согласуется с нормами, не соответствует ожиданиям группы или всего общества. Однако ожидания со временем меняются. В СССР в 60—70-е годы школьные учителя боролись с "длинноволосыми" учениками, усматривая в этом подражание "буржуазном ...

Методические рекомендации к коррекцюнной работе с детьми низкого уровня развития
I. Неправильное срисовывание фразы свидетельствует о том, что у детей не готов зрительный аппарат, т.е. мышцы глаз слабо развиты. Поэтому путем упражнений можно помочь развитию зрительного органа. Для этого целесообразно: проводить занятия по рисованию (срисовывание образца); рассматривать серии сю ...


Навигация

Copyright © 2018 - All Rights Reserved - www.eduintro.ru